在本文中,我们的主要目的是针对穿孔域上的neumann类型边界价值问题(1.1) - (1.3)开发定量均质化理论,并建立收敛速率,在文献中从未研究过。在[6]中已经开始研究了周期性环境中汉密尔顿 - 雅各比方程的定量均质化,并且对于一般的非率汉密尔顿– jacobi方程式,对速率O(ε1 / 3)的收敛速率均为。[18]中已经启动了汉密尔顿–雅各布方程的定量均质化的最新发展,并且在[23]中建立了最佳速率O(ε)。在这个方向上有很大的兴趣和发展,我们指的是[7、8、10、17、19、20、21、24]和其中的参考文献。特别是我们的工作受[8]的启发,该工作研究了在状态约束边界条件下,研究凸汉密尔顿 - 雅各比方程的定量均匀化。在[8]中,作者重新开发了[23]中引入的框架,以将其应用于穿孔域上的状态约束问题。更确切地说,引入了与问题相关的扩展度量功能,并且证明是本文中的关键成分的一种亚粘附和超级效果,可以建立同质化的定量结果。此方法很健壮。然而,它在很大程度上取决于粘度解决方案的表示公式的结构,该公式是由相关值函数在最佳控制中给出的问题。因此,如果我们改变边界条件,则需要非常小心。如下所述,当我们考虑针对Neumann型问题的粘度解决方案的表示公式(1.1) - (1.3)时,我们需要考虑轨迹的反射效应,这是Skorokhod问题(1.11)表达的。这会造成新的困难,并需要仔细的论据来建立定量结果。我们指出,即使在凸设置中,也没有PDE争论来获得比O(ε1 / 3)更好的收敛速率。值得一提的是,在评论文章[15]中,定性和定量均质化理论被列为偏微分方程研究的主要发展。[15]中考虑的方程是椭圆形PDE。可以指出,诺伊曼问题比Dirichlet问题更加困难。在[16]中,作者解决了γ=ν的Neumann问题。对于一般情况下,γ与边界无处不在,[15]指出,即使对于Laplacian操作员,问题也不是微不足道的,并且是一个有趣且充满挑战的问题。例如,有关此方向的最新发展,请参见[13,22]。在本文中,我们建立了具有一般诺伊曼边界条件的一阶汉密尔顿 - 雅各比方程的定量均质化理论,并提供了收敛的最佳速率。在我们的论文中,我们定义值函数vεn,vεc:ωε×[0,∞)→r for(1.1) - (1.3)by
主要关键词